MyTaxa Manual
Author: Chengwei Luo, Luis M. Rodriguez-R., and Konstantinos T. Konstantinidis

Copyright: Chengwei Luo, Luis M. Rodriguez-R., and Konstantinos T. Konstantinidis,
Georgia Institute of Technology, 2013;

Citation: Chengwei Luo, Luis M. Rodriguez-R., and Konstantinos T. Konstantinidis,
MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences,
Nucleic Acids Research, in press

[Installation, standalone only]

To start, you will need a C++ compiler and GNU make to be installed in your
computer. To check if you have them, type ‘g++" and ‘make’ in the terminal. If you
don’t have them, go to http://gcc.gnu.org for g++, and
http://www.gnu.org/software/make/ for GNU make.

You can either download the zip archive directly from the github repository:
https://github.com/luo-chengwei/MyTaxa/archive/master.zip

Or, you can clone it from github (if you want to have git installed, please go to
http://git-scm.com/), go to the terminal and run:

$ git clone git://github.com/luo-chengwei/MyTaxa

This command will create a MyTaxa directory on your local machine, and then you
need to ‘cd’ into this directory and run:

$ make
This command will create the binary ‘MyTaxa’.

There is one more necessary step before you can run MyTaxa, to obtain the database
(DB) of gene weights. You can either download DB from the following address:

http://enve-omics.ce.gatech.edu/mytaxa/download/db.latest.tar.gz

or, you can run this utility script:
$ python utils/download_db.py

Then you need to decompress the DB by running:

$ tar xvzf db.latest.tar.gz

Note that you should have all the DB files at./MyTaxa/db/

Now you should be ready to run MyTaxa. To verify it, you can run:

$./MyTaxa

This should print out a help/usage menu, without any error message.

[Running MyTaxa]

You can generally follow Figure 1’s “online” part for MyTaxa analysis. The follow
section will offer details on how to make input file for MyTaxa (Step 1, which
includes gene calling, GFF format file, etc), and how to carry out the reference search

(Step 2).

Offline «

download_db.py

Pre-calculated database
(8,942 NCBI genomes)

Q—’:\ Complete and draft]
|

genomes from NCB

Gene clustering
(BLAT, USearch, etc)
Indexed gene
cluster database

.

\

J

» Online
mytaxa_prep.py
(])
Query Gene calling
sequences (FragGeneScan,

MetaGeneMark,

GFF format file of
gene prediction
Reference search
(Blast, BLAT,

HMMERS, etc
lTabuIar blast-like ﬁﬂ
of search results
_J

infile_convert.py

v v

MyTaxa MyTaxa
Standalone Webserver

-

Figure 1. Flowchart of using MyTaxa.

Note: there is a sample input file you can test at./MyTaxa/example/.

[step 1, make input file]

To run MyTaxa, the only input file required is a tabular blast-like file with the results
from a search against a reference database; but there are a few things you need to
make sure before running the search:

* The input file for the search should be genes encoded on the query
sequences. If the query sequences are not annotated yet, you need to call the
genes first and then do the search of the genes against the reference
database. You can run ab-initio gene prediction software such as
MetaGeneMark, Prodigal, FragGeneScan, etc (1-3) to get the genes encoded
on the query sequences on your own; or, you can use utils/metaxa_prep.py
for this purpose, which essentially uses Prodigal to call all the genes. You can
use the gene prediction results in .gff format from
MetaGeneMark/GeneMark as a start point with the webserver; to follow
this route, you can now jump to the webserver subsection below. (Note:
since you will rely on the webserver for the homology search, your priority
will be low and your input size will be limited; also you cannot customize
your reference database.). Otherwise, you can do the search on your own
(See below).

* The naming of the genes/entries in the input multi-fastA file is recommend to
follow this scheme (you don’t have to follow this rule, as long as you can
retrieve gene_id).

>contig_xyz|gene_id
for instance, by running metaxa_prep.py, the genes predicted have names like:
>contigl [1915-2331| 1

which means this gene is from “contigl” (contigID) and the gene name is “1915-
2331|1” (gene ID); you can use other alphanumerical schemes to name your
contigID and gene ID, as long as the contig ID does not contain the ‘|’ sign, and
the ‘|’ sign separates contiglD from gene ID.

* Several options for the reference database to search the genes against are
available as long as they are gi number referenced (genlnfo identifier). For
example, in the NR database of NCBI, an entry looks like:

>01|21305377 | gb | AAM45611.1 |AF384285_1 (AF384285) envelope protein
[Human immunodeficiency virus type 1]

The numeric id “21305377” is the gi number you need in the results, and that’s
how MyTaxa will recognize which the matching genes is and find its weights
in the DB.

In the example sample folder, you can find “example.fa” as an example input file for
the search.

[step 2, similarity search]

After you have the fasta file and reference database ready, you can run the blast
search or any other search engine you like, as long as you can produce a blast
tabular format-like file (check the “example.blat” as an example). The output file
can be also used as another entry point of the webserver; in this case, you may
skip the rest, which are specific to the standalone version, and jump to the
webserver subsection.

Then you should modify the output file from the search by adding three columns to
the end of each match. These are:

* contiglD
e genelD
* matched gene’s gi number

You can use utils/infile_convert.pl to modify the tabular blast output into the
MyTaxa input file (run “perl utils/infile_convert.pl” to get it print out the usage

menu). You can check “example.mytaxa.input.txt” as an example of this file.

From this point, you can either use the standalone or the webserver to generate the
output of MyTaxa.

Webserver:

Webserver address: http://enve-omics.ce.gatech.edu/mytaxa/submit

There are two input files you will need for the webserver as described above:

GFF file of gene prediction;
Tabular blast output like file;

You'll need to fill out a simple form (name, email, job name), and you can customize
some of the parameters (e.g., bit-score, alignment length). Then you can hit the
“submit” button to get the job in queue. When it is finished, you will be notified of
the results by email.

Standalone:

In the standalone version, you can run this command on the terminal:

$./MyTaxa <input_file> <output_file> <score_cutoff> <num_of _matches_to_use>

where the input file would be the modified blast output-like tabular file, the output
file is where the MyTaxa prediction will be found. There are two parameters you
need to set are: the score cutoff (recommend value: 0.5) and number of matches to
use in the analysis (recommend value: 5). MyTaxa’s run will generate an output that
is explained below.

[The output format and visualization]
There is a toy example available: ./MyTaxa/example/example.mytaxa
Each query sequence will have two lines in the output, and they are:

* Line 1: <query name> <lowest_level> <score> <lowest_level_taxonomy_id>
* Line 2: the taxonomy path from (super)-kingdom down to the lowest taxon
predicted.

You can parse the output file to obtain the relative abundance of identified taxa at
the phylum/genus/species levels by running utils/MyTaxa.distribution.pl. (run
“perl utils/MyTaxa.distribution.pl” to print out detailed usage information).
Furthermore, with an additional reads-mapping-to-contig file, you can directly
visualize the relative abundance using utils/MyTaxa.distribution.pl, please refer
to its help menu for details.

In the example folder, you can find example files: “example.mytaxa.Phylum.txt”,
“example.mytaxa.Genus.txt”, and “example.mytaxa.Species.txt”.

The output from MyTaxa can be also visualize in Krona
(http://sourceforge.net/p/krona/home/krona/) by using the utility script
utils/mytaxa2krona.py:

$ python utils/mytaxa2krona.py <mytaxa_output> <krona_input>

the krona_input file generated can be used to produce the interactive pie-chart by
Krona (4). A toy example for this file is provided at:
./MyTaxa/example/example.krona_input.txt.

Then you can run Krona as:

$ ktImportText —o <output_html> <krona_input>

the output_html would be the output from Krona that you can open in your

webrowser to visualize the composition of the MyTaxa output. A sample example is
provided at: ./MyTaxa/example/example.krona_input.txt

[Trouble shooting]

See FAQ page at: http://enve-omics.ce.gatech.edu/mytaxa/fag

You can refer to the wiki page where some of the issues/fix would be reported:

https://github.com/luo-chengwei/MyTaxa/wiki

References

1. Rho M, Tang H, & Ye Y (2010) FragGeneScan: predicting genes in short and
error-prone reads. Nucleic acids research 38(20):¢191.

2. Zhu W, Lomsadze A, & Borodovsky M (2010) Ab initio gene identification in
metagenomic sequences. Nucleic acids research 38(12):e132.

3. Hyatt D, et al. (2010) Prodigal: prokaryotic gene recognition and translation
initiation site identification. BMC bioinformatics 11:119.

4. Ondov BD, Bergman NH, & Phillippy AM (2011) Interactive metagenomic
visualization in a Web browser. BMC bioinformatics 12:385.

